Курс «Дополнительные главы дискретной математики и кибернетики» (часть III)

1. Планы семинарских занятий и методические указания к ним на осенний семестр 2020–2021 уч. года

Семинар 12 (семинар 1 раздела III): 23.11-28.11

Постановка задачи синтеза схем для ФАЛ (операторов) из специальных классов, мощностные характеристики этих классов и соответствующие нижние оценки функций Шеннона для их сложности. Инвариантные и квазиинвариантные классы ФАЛ, их структурное описание и особенности поведения мощностных последовательностей. Теоретический материал [4, §§1,11].

В классе.

- 1. Выяснить, какие из следующих классов ФАЛ (операторов) являются невырожденными, и получить нижние мощностные оценки (НМО) функций Шеннона для сложности реализации ФАЛ из данных классов СФЭ в стандартном базисе:
 - 1) Q -класс Φ АЛ, равных 1 при $x_1 = 0$;
 - 2) Q класс ФАЛ, симметричных по БП x_1, x_2, x_3 ;
 - 3) Q класс Φ АЛ, монотонных по БП x_1, x_2 ;
 - 4) Q класс ФАЛ, равных 0 на наборах с чётным числом 1;
 - 5) Q класс линейных 1 ФАЛ;
 - 6) Q класс самодвойственных 1 ФАЛ;
 - 7) Q класс симметрических 1 ФАЛ;
 - 8) Q класс операторов вида $F=(f_1,f_2,f_3)$ таких, что $f_1\cdot f_2\equiv 0$ при $i\neq j$ и $f_1\vee f_2\vee f_3\equiv 1$.
- 2. Выделить среди классов Φ АЛ из п.1 квазиинвариантные и инвариантные классы, для которых найти пределы соответствующих им мощностных последовательностей.
- 3. Найти порождающее множество класса линейных ФАЛ.

На дом.

- 1. Исследовать на невырожденность и, в случае невырожденности, установить асимптотику НМО функции Шеннона $L^C(Q(n))$ для сложности реализации ФАЛ (операторов) от БП x_1, \ldots, x_n из класса Q, где:
 - 1) Q класс ФАЛ, равных 1 при $x_1=x_2=1;$
 - 2) Q класс Φ АЛ, монотонных по x_1 и антимонотонных по x_2 ;
 - 3) Q класс ФАЛ, у которых любая подфункция от БП x_1, x_2 принадлежит множеству $\{\bar{x}_1, \ \bar{x}_2, \ x_1, \ x_2, \ x_1 \lor x_2, \ x_1 \sim x_2\};$
 - 4) Q класс операторов $F = (f_1, f_2)$ таких, что $f_2(\alpha_1, \ldots, \alpha_n) = \bar{f}_1(\beta_1, \ldots, \beta_n)$, где набор $\tilde{\beta}$ имеет номер на единицу больше, чем набор $\tilde{\alpha}$, если $\tilde{\alpha} \neq (1, \ldots, 1)$, и равен нулевому набору в противном случае.
 - 5) Q класс ФАЛ, симметричных по своим $n, n = 1, 2, \ldots$ существенным БП с рабочими числами вида $a, a + 4, a + 8, \ldots, a + 4k$, где $a \in \{0, 1, 2, 3\}$ и $k = \lfloor (n a)/4 \rfloor$;

¹Класс рассматривался на лекциях.

- 2. Выделить среди классов ФАЛ из п.1 квазиинвариантные и инвариантные классы, для которых найти пределы соответствующих им мощностных последовательностей.
- 3. Найти порождающее множество инвариантного класса ФАЛ, состоящего из констант и всех монотонных элементарных конъюнкций.

Методические указания.

Задача 1 решается на основе подсчета мощности множества $Q(n), n=1,2,\ldots$, для рассматриваемого класса Q, а также определения невырожденного класса. Класс ФАЛ (операторов), то есть последовательность $Q(1), Q(2), \ldots, Q(n), \ldots$, где Q(n) — некоторое множество систем из m=m(n) ФАЛ от БП x_1,\ldots,x_n , считается невырожденным, если $n+m(n)=o(\log |Q(n)|/\log \log |Q(n)|)$.

Задача 2 решается на основе понятий квазиинвариантного и инвариантного классов. Класс ФАЛ $Q:Q(1),Q(2),\ldots,Q(n),\ldots$, называется *квазиинвариантным*, если для некоторого n_0 и любого $n,\ n\geq n_0$, множество ФАЛ, получающихся из ФАЛ множества Q(n) подстановкой констант 0 и 1 вместо БП x_n , содержится в Q(n-1). При этом его мощностная последовательность $\sigma_Q(n)=\log|Q(n)|/2^n$ монотонно не возрастает и стремится к пределу $\sigma_Q=\lim_{n\to\infty}\sigma_Q(n),\ 0\leq\sigma_Q\leq 1$.

Класс Φ АЛ Q называется *инвариантным*, если он замкнут относительно операций: 1) добавление и изъятие фиктивных БП Φ АЛ; 2) переименование БП без отождествления; 3) подстановка констант вместо БП.

Задача 3 решается на базе определения порождающего элемента и порождающего множества нетривиального инвариантного класса $Q, Q \neq P_2$. При этом ФАЛ $g, g \notin P_2 \setminus Q$, считается порождающим элементом Q, если $g \notin Q$, но любая собственная подФАЛ g входит в Q, а максимальное по включению множество из попарно не конгруэнтных порождающих элементов Q называется его порождающим множеством.

Семинар 13 (семинар 2 раздела III): 30.11-5.12

Синтез СФЭ для ФАЛ из специальных классов на основе асимптотически оптимальных методов синтеза для квазиинвариантных классов ФАЛ и основных идей принципа локального кодирования, установление асимптотически соответствующих функций Шеннона.

В классе. Установить асимптотическое поведение функции Шеннона $L^C(Q(n))$ для сложности реализации ФАЛ (операторов) от БП x_1, \ldots, x_n из класса Q, где Q—один из невырожденных классов, указанных в пунктах 1–4, 8 классной задачи 1 семинара 12.

На дом. Установить асимптотическое поведение функции Шеннона $L^C(Q(n))$ для сложности реализации ФАЛ (операторов) от БП x_1, \ldots, x_n из класса Q, где Q—один из невырожденных классов, указанных в домашней задаче 1 семинара 12.

Методические указания.

Задачи 1-3 из списка как классных, так и домашних задач можно решать с помощью утверждения 29.1 про квазиинвариантные классы. Для решения классной задачи №4 достаточно применить простой вариант принципа локального кодирования (ПЛК), связанный с представлением ФАЛ $f(x_1, \ldots, x_n) \in Q(n)$ в виде $f = g(x_1, \ldots, x_{n-1}) \cdot (x_1 \oplus \ldots \oplus x_n)$, где $g = f(x_1, \ldots, x_{n-1}, x_1 \oplus \ldots \oplus x_{n-1} \oplus 1)$.

Для решения классной задачи №8 и домашней задачи №4 необходимо использовать вариант ПЛК, связанный с кодированием для оператора $F \in Q(n)$ всех его «остаточных» операторов вида $F_{\sigma'}(x'') = F(\sigma', x'')$, где $x' = (x_1, \ldots, x_q)$, $x'' = (x_{q+1}, \ldots, x_n)$ и $\sigma' \in B^q$, двоичными наборами подходящей длины. При этом основную по сложности часть искомой схемы будет составлять схема, реализующая оператор, который по набору σ' БП x' выдаёт код (в домашней задаче №4 в этом коде должен быть учтён один «дополнительный» разряд столбца значений Φ АЛ f_1 ,

позволяющий перейти к «следующему» набору значений БП x'') соответствующего остаточного оператора $F_{\sigma'}(x'')$. Вспомогательный оператор декодирования, который по набору σ'' значений БП x'' и коду оператора $F_{\sigma'}(x'')$ вычисляет $F(\sigma', \sigma'')$, при подходящем выборе параметров будет иметь существенно меньшую сложность.

Семинар 14 (семинар 3 раздела III): 7.12-12.12

Сложность не всюду определённых функций, их использование при синтезе схем для ФАЛ из специальных классов. Теорема Храпченко.

В классе.

- 1. Найти сложность не всюду определённой $\Phi A\Pi f, f \in \hat{P}_2(3)$, для которой $\tilde{\alpha}_f = (0001\,1222)$.
- 2. Найти асимптотику функции Шеннона $L^{C}(Q(n))$ для сложности реализации ФАЛ от БП x_1, \ldots, x_n из класса Q(n), включающего в себя все те ФАЛ, которые обращаются в ноль на наборах куба B^n , имеющих не меньше n/2 единиц.
- 3. Доказать, что $12\leqslant L^\pi(s_4^2)\leqslant 16$, где s_n^I симметрическая ФАЛ от n БП, «рабочие» числа которой составляют множество $I,\,I\subseteq [0,n].$
- 4. Доказать, что $L^{\pi}((x_1 \oplus \ldots \oplus x_k)(x_{k+1} \oplus \ldots \oplus x_n)) \geqslant n^2/2$.

На дом.

- 1. Найти сложность не всюду определённой ФАЛ $f, f \in \hat{P}_2(3)$, для которой $\tilde{\alpha}_f = (0111\,2221)$.
- 2. Найти асимптотику функции Шеннона $L^C(Q(n))$ для сложности реализации ФАЛ от БП x_1, \ldots, x_n из класса Q(n), включающего в себя все те ФАЛ, которые обращаются в ноль на наборах куба B^n , имеющих не равное $i, 1 \le i \le n-2$ число единиц.
- 3. Доказать, что $63 \leqslant L^{\pi}(s_8^{\{2,4,6\}}) \leqslant 80$.
- 4. Доказать, что $L^{\pi}((x_1 \oplus \ldots \oplus x_k)(x_{k+1} \oplus \ldots \oplus x_s)(x_{s+1} \oplus \ldots \oplus x_n)) \geqslant n^2/3$, где $1 \leqslant k < s < n$.

Методические указания.

При решении классной (домашней) задачи №1 необходимо сначала убедиться в том, что любое доопределение g ФАЛ f существенно зависит от k, где k=3 (соответственно k=2) БП, т. е. $L^{\rm C}(g) \geq k-1$. После этого достаточно взять в качестве доопределения g ФАЛ f из классной (домашней) задачи ФАЛ, столбец значения которой имеет вид (0001 1111) (соответственно (0111 0111)) и реализовать её формулой $x_1 \vee x_2 x_3$ (соответственно $x_1 \vee x_3$) сложности k.

В классной (домашней) задаче №2 нижние мощностные асимптотические оценки вида $2^{n-1}/n$ (соответственно $c_n^i/\log c_n^i$) функции Шеннона $L^{\rm C}(Q(n))$ устанавливаются с помощью утверждения 26.1. Для получения соответствующих верхних оценок произвольная ФАЛ $g, g \in Q(n)$, представляется в виде $g = f \cdot h$, где $f \in \hat{P}_2(n)$ с областью определения $A, A \subseteq B^n$, которая состоит из «нижней» половины слоёв куба в случае классной задачи и i-го слоя куба в случае домашней задачи, а h— характеристическая ФАЛ множества A. После этого ФАЛ f реализуется как не всюду определённая ФАЛ по утверждению 32.2, а ФАЛ h— как симметрическая ФАЛ, имеющая линейную сложность (замечание к утв. 31.1).

Как классная, так и домашняя задачи 3, 4 решаются с помощью теоремы Храпченко (утверждение 36.1) при подходящем подборе множеств \mathcal{N}' и \mathcal{N}'' , который максимизирует оценку сложности. Так, в классной задаче \mathbb{N}^3 $\mathcal{N}' = B_2^4$ и $\mathcal{N}'' = B_1^4 \cup B_3^4$, в классной задаче $\mathbb{N}^4 - \mathcal{N}' = N_f$, а \mathcal{N}'' состоит из всех соседних с \mathcal{N}' наборов и т. п.

 $^{^{1}}$ В этом утверждении $\hat{P}_{2}(n,t)$ — множество всех не всюду определённых ФАЛ от БП x_{1},\ldots,x_{n} , имеющих область определённости из t наборов куба B^{n} .

Требуемые верхние оценки получаются прямым построением искомых π -схем или соответствующих им формул с поднятыми отрицаниями:

$$s_4^2 = (x_1 \oplus x_2)(x_3 \oplus x_4) \vee x_1 x_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 x_3 x_4,$$

$$s_8^{\{2,4,6\}} = (x_1 \oplus \ldots \oplus x_8) s_8^{\{0,8\}}(x_1, \ldots, x_8).$$

2. Литература

- 1. Марченков С. С. Избранные главы дискретной математики. М.: МАКС Пресс, 2016. 133 с.
 - http://mk.cs.msu.ru/images/2/25/ИзбрГлавыДискрМатем_2015.pdf
- 2. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2003. 384 с.
- 3. Ложкин С. А. Лекции по основам кибернетики. М.: Издательский отдел факультета ВМиК МГУ им. М. В. Ломоносова, 2004.-256 с.
- 4. Ложкин С. А. Дополнительные главы кибернетики. MГУ, 2019. http://mk.cs.msu.ru/images/0/0b/Dgcyb-lect-190113.pdf
- 5. Яблонский С. В. Элементы математической кибернетики. М.: Высшая школа, 2007.-188 с.
- 6. Сапоженко А. А. Некоторые вопросы сложности алгоритмов. М.: Изд-во МГУ, 2001.-46 с. http://mk.cs.msu.ru/images/e/e8/Sapozhenko_alg.pdf (номера страниц не соответствуют печатному изданию)
- 7. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2005.-416 с.
- 8. Алексеев В.Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнёва С.Н. Задачи по курсу «Основы кибернетики»: 2-е изд. М.: Издательский отдел факультета ВМиК МГУ, 2011. 71 с.
 - http://mk.cs.msu.ru/images/a/ab/Задачи_по_курсу_Основы_кибернетики_2011.pdf